Eine digitale Signatur ist das elektronische Äquivalent eines traditionellen , schriftlichen Unterschrift. Es wird unter Verwendung einer mathematischen Formel oder eines Algorithmus , und repräsentiert in einem Computer als eine Reihe von Binärstellen , oder durch Anwenden eines Satzes von Parametern , wie Domain- Parameter bekannt "-Bits . " - Das kann spezifisch für einen einzelnen Benutzer oder gemeinsam in einer Gruppe von Benutzern - zu einer digitalen Signatur -Algorithmus kann der Benutzer die Identität eines Unterzeichners und die Integrität der signierten Daten . Private-und Public Keys
Digitale Signatur -Algorithmen beruhen auf einem Paar verwandte Tonarten , wie einem privaten Schlüssel und einem öffentlichen Schlüssel bekannt. Jeder Unterzeichner besitzt ein Paar von Schlüsseln und verwendet den privaten Schlüssel , der geheim gehalten wird , um eine digitale Signatur zu erzeugen. Wer zur Überprüfung der Signatur einsetzen können, die entsprechenden öffentlichen Schlüssel , die frei durch die Unterzeichnerstaaten verteilt wird. Federal Information Processing Standards (FIPS) in den Vereinigten Staaten genehmigt drei Algorithmen zur Erzeugung , Überprüfung und Validierung digitaler Signaturen .
DSA
Der Digital Signature Algorithm , wie angegeben FIPS 186-3 Norm , beschäftigt eine Funktion als Hash-Funktion bekannt ist, um eine komprimierte Version der Daten , als Message Digest bekannt zu generieren. Die Hash-Funktion wandelt eine Zeichenkette in eine kürzere fester Länge Schlüssel , der die Original-Zeichenkette . Der Message Digest wird in den DSA-Algorithmus , um die digitale Signatur zu erzeugen . Die digitale Signatur wird an den Empfänger , der sie prüft Verwendung des Unterzeichners öffentlichen Schlüssel und den gleichen Hash- Funktion gesendet.
RSA
Der sogenannte RSA Digital Signature Algorithm - nach seinen Erfindern , Ron Rivest, Adi Shamir und Leonard Adleman benannt - wird auch durch FIPS 186-3 Norm zugelassen. Ein RSA- Public-Key aus einem Koeffizienten ( oder Modul) , dem Produkt aus zwei Primzahlen positive erhalten , und einem öffentlichen Schlüssel Exponent . Ein privater RSA-Schlüssel aus dem gleichen Modul und einem privaten Schlüssel Exponent , die auf der öffentlichen Exponenten abhängt. Der öffentliche Schlüssel Exponent ist in der Regel viel kleiner als die privaten Schlüssel Exponent , so dass Verifizieren einer digitalen Signatur ist schneller als die Erzeugung der Signatur in den ersten Platz.
ECDSA
der elliptischen Kurve Digital Signature Algorithm ist die elliptische Kurve Äquivalent von DSA und wurde zum ersten Mal von dem renommierten Kryptologen Dr. Scott A. Vanstone 1992 vorgeschlagen . ECDSA wurde als National Institute of Standards and Technology Norm im Jahr 2000 angenommen. ECDSA erfordert , dass die privaten und öffentlichen Schlüssel -Paare in Bezug auf bestimmte Domäne Parameter, die für längere Zeit bleiben kann behoben werden, generiert.